数学百科

整数除法法则

2023-05-01

division rule of integers整数的运算法则之一.在整数除法中,除数要小于被除数才能进行.当被除数不超过两位数,除数是一位数,而商也是一位数时,可根据乘法口诀直接得出商和余数(余数可能是零),称其为表内除法;被除数超过两位数的除法,称为多位数除法,其法则如下:

1.截数.从被除数的最高位起,除数是几位数就从左边截出几位数,当被截出的数小于被除数时,应再截一位数.

2.试商.用1,2,…,9中的适当数字作为初商,用初商去乘除数,使所得的积小于(或等于)所截取的数,并从截取的数中减去这个积,所得差应小于除数,差也可能是零.

3.再截数.将被除数第一次被截后余下的数,紧接着写在差的后面,称为第一余数,从第一余数中第二次截数,所截位数仍与除数的位数相同,当第二次被截数小于除数时,应再截一位数.

4.再试商.仍用1,2,…,9中的适当数字作为次商,用次商去乘除数,使所得的积小于(或等于)第二次截得的数,并从第二次截取的数中减去这个积,所得差应小于除数,差也可能是零,将被除数第二次被截后余下的数,紧接着写在第二次差的后面,称为第二次余数.

5.初商应写在第一次被截数的最末一位数字上边,次商应写在第二次被截数的最末一位数字上边,如初商和次商之间有空位应补0,0的个数与空位的个数相同.

6.用上述方法一直做下去,直到被除数的个位数字被截下参与计算完为止.如果最后一次差为0,把各次所得商按先后顺序从左到右排好,就得到完全商(简称商).如果最后一次差不为0,所得商称为不完全商.